Digitally tunable, wide-band amplitude, phase, and frequency detection for atomic-resolution scanning force microscopy.

نویسندگان

  • Z Khan
  • C Leung
  • B A Tahir
  • B W Hoogenboom
چکیده

Frequency-modulation atomic force microscopy (FM-AFM) relies on an accurate tracking of the resonance frequency of a scanning probe. It is now used in environments ranging from ultrahigh vacuum to aqueous solutions, for slow and for fast imaging, with probes resonating from a few kilohertz up to several megahertz. Here we present a versatile experimental setup that detects amplitude, phase, and frequency of AFM probes for resonance frequencies up to 15 MHz and with >70 kHz maximum bandwidth for amplitude/phase detection. We provide generic parameter settings for variable-bandwidth frequency detection and test these using our setup. The signal-to-noise ratio of the frequency detector is sufficiently high to record atomic-resolution images of mica by FM-AFM in aqueous solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...

متن کامل

Scanning impedance microscopy (SIM): A novel approach for AC transport imaging

Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...

متن کامل

Scanning impedance microscopy (SIM): A novel approach for AC transport imaging

Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2010